Relationships between protein and mineral during enamel development in normal and genetically altered mice.
نویسندگان
چکیده
The purpose of this study was to quantify and compare the amounts of volatiles (mostly protein) and mineral present in developing incisor enamel in normal mice and in those genetically engineered for absence of intact enamelin, ameloblastin, matrix metalloproteinase 20 (MMP20) or kallikrein-related peptidase 4 (KLK4). Data indicated that all mice showed peaks in the gross weight of volatiles and a similar weight of mineral at locations on incisors normally associated with early maturation. Thereafter, the content of volatiles on normal incisors declined rapidly by as much as 62%, but not by 100%, over 2 mm, accompanied by increases of ≈ threefold in mineral weights. Enamelin heterozygous mice (lower incisors) showed a decrease in volatile content across the maturation stage, yet mineral failed to increase significantly. Mmp20 null mice showed no significant loss of volatiles from maturing enamel, yet the amount of mineral increased. Klk4 null mice showed normal mineral acquisition up to early maturation, but the input of new volatiles in mid to late maturation caused the final mineralization to slow below normal levels. These results suggest that it is not only the amount of protein but also the nature or type of protein or fragments present in the local crystallite environment that affects their volumetric expansion as they mature.
منابع مشابه
Effect of kallikrein 4 loss on enamel mineralization: comparison with mice lacking matrix metalloproteinase 20.
Enamel formation depends on a triad of tissue-specific matrix proteins (amelogenin, ameloblastin, and enamelin) to help initiate and stabilize progressively elongating, thin mineral ribbons of hydroxyapatite formed during an appositional growth phase. Subsequently, these proteins are eradicated to facilitate lateral expansion of the hydroxyapatite crystallites. The purpose of this study was to ...
متن کاملConsequences for enamel development and mineralization resulting from loss of function of ameloblastin or enamelin.
Although the nonamelogenin proteins, ameloblastin and enamelin, are both low-abundance and rapidly degrading components of forming enamel, they seem to serve essential developmental functions, as suggested by findings that an enamel layer fails to appear on teeth of mice genetically engineered to produce either a truncated form of ameloblastin (exons 5 and 6 deleted) or no enamelin at all (null...
متن کاملDecreased mineral content in MMP-20 null mouse enamel is prominent during the maturation stage.
During enamel development, matrix metalloproteinase-20 (MMP-20, enamelysin) is expressed early during the secretory stage as the enamel thickens, and kallikrein-4 (KLK-4, EMSP1) is expressed later during the maturation stage as the enamel hardens. Thus, we investigated whether the physical properties of the secretory-/maturation-stage MMP-20 null enamel were significantly different from those o...
متن کاملKallikrein-related peptidase-4 (KLK4): role in enamel formation and revelations from ablated mice
Enamel development occurs in stages. During the secretory stage, a soft protein rich enamel layer is produced that expands to reach its final thickness. During the maturation stage, proteins are removed and the enamel matures into the hardest substance in the body. KLK4 is expressed during the transition from secretory to the maturation stage and its expression continues throughout maturation. ...
متن کاملCritical roles for WDR72 in calcium transport and matrix protein removal during enamel maturation
Defects in WDR72 (WD repeat-containing protein 72) cause autosomal recessive hypomaturation amelogenesis imperfecta. We generated and characterized Wdr72-knockout/lacZ-knockin mice to investigate the role of WDR72 in enamel formation. In all analyses, enamel formed by Wdr72 heterozygous mice was indistinguishable from wild-type enamel. Without WDR72, enamel mineral density increased early durin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- European journal of oral sciences
دوره 119 Suppl 1 شماره
صفحات -
تاریخ انتشار 2011